Evolving Fuzzy Rules for
Goal-Scoring Behaviour in Robot Soccer

Jeff Riley
RMIT University
Australia

1. Introduction

If a soccer player is able to learn behaviours it should exhibit in response to stimuli, it may
adapt to unpredictable, dynamic environments. Even though the overall objective a player is
expected to achieve is able to be described, it is not always possible to precisely describe the
behaviours a player should exhibit in achieving that objective. If a function can be described
to evaluate the results of the player’s behaviour against the desired outcome, that function
can be used by some reinforcement learning algorithm to evolve the behaviours necessary to
achieve the desired objective.

Fuzzy Sets (Zadeh 1965; Kandel 1986; Klir and Folger 1988; Kruse, Gebhardt et al. 1994) are
powerful tools for the representation of uncertain and vague data. Fuzzy inference systems
make use of this by applying approximate reasoning techniques to make decisions based on
such uncertain, vague data. However, a Fuzzy Inference System (FIS) on its own is not
usually self-adaptive and not able to modify its underlying rulebase to adapt to changing
circumstances.

There has not been a great deal of success in the automatic generation of robot soccer
players, and in fact hand-coded players, or players with hand-coded skills, generally
outplay automatically generated players. Genetic algorithms (Holland 1975) are adaptive
heuristic search algorithms premised on the evolutionary ideas of natural selection. By
combining the adaptive learning capabilities of the genetic algorithm (GA) with the
approximate reasoning capabilities of the fuzzy inference system, a hybrid system is
produced, and the expectation is that this hybrid system will be capable of learning the
behaviours a player needs to exhibit in order to achieve a defined objective - in this case
developing goal-scoring behaviour. While the combination of genetic algorithms and fuzzy
inference systems have been studied in other areas, they have not generally been studied in
an environment as complex, uncertain and dynamic as the robot soccer environment.

2. Related Work

2.1 RoboCup
The Robot World Cup Initiative, RoboCup, has become an international research and
education initiative, providing a standard platform and benchmark problem for research in



140 Robot Soccer

the fields of artificial intelligence and robotics. It provides a realistic research environment
by using a soccer game as a platform for a wide range of research problems including
autonomous agent design, multi-agent collaboration, real-time reasoning, reactive
behaviour and intelligent robot control (Kitano, Asada et al. 1997a; Kitano, Asada et al.
1997b; Kitano, Tambe et al. 1997).

RoboCup currently consists of three major domains: RoboCupSoccer, RoboCupRescue and
RoboCupJunior. The RoboCupSoccer domain includes a simulation league and is the
environment used for the RoboCup part of this work.

2.1.1 The RoboCupSoccer Simulation League

The RoboCupSoccer Simulation League provides a simulated but realistic soccer
environment which obviates the need for robot hardware and its associated difficulties,
allowing researchers to focus on issues such as autonomous agent design, learning,
planning, real-time multi-agent reasoning, teamwork and collaboration. The
RoboCupSoccer simulator has been in continual development since its inception in 1995,
and allows researchers to study many aspects of machine learning techniques and multi-
agent systems in a complex, dynamic domain. The RoboCupSoccer environment is
described in detail in (Noda 1995; Noda, Matsubara et al. 1998; Noda and Stone 2001).

2.2 The SimpleSoccer Environment

The RoboCupSoccer simulation league is an important and useful tool for multi-agent and
machine learning research which provides a distributed, multi-agent environment in which
agents have an incomplete and uncertain world view. The RoboCupSoccer state-space is
extremely large, and the agent perception and action cycles in the RoboCupSoccer
environment are asynchronous, sometimes resulting in long and unpredictable delays in the
completion of actions in response to some stimuli. The large state-space, the inherent delays,
and the uncertain and incomplete world view of the agents can increase the learning cycle of
some machine learning techniques onerously.

There is a large body of work in the area of the application of machine learning techniques
to the challenges of RoboCupSoccer (e.g. (Luke 1998a; Luke 1998b; Luke, Hohn et al. 1998;
Ciesielski and Wilson 1999; Stone and Veloso 1999; Uchibe 1999; Ciesielski and Lai 2001;
Riedmiller, Merke et al. 2001; Stone and Sutton 2001; Ciesielski, Mawhinney et al. 2002;
Lima, Custédio et al. 2005; Riedmiller, Gabel et al. 2005)), but because the RoboCupSoccer
environment is so large, complex and unpredictable, the extent to which such techniques
can meet these challenges is not certain. The SimpleSoccer environment was designed and
developed to address the problem of the complexity of the RoboCupSoccer environment
inhibiting further research, and is described in detail in (Riley 2003) and (Riley 2007).

2.3 Machine Learning, Evolutionary Algorithms and Simulated Robot Soccer

Machine learning and evolutionary algorithms in various forms have been applied to the
problem of robot soccer. Some representative examples, with emphasis on evolutionary
algorithms, are described briefly in the following paragraphs.

Two early attempts to learn competent soccer playing skills from scratch via genetic
programming are described in (Luke, Hohn et al. 1998) and (Andre and Teller 1999). Both
set out to create complete, cooperative soccer playing teams, but neither achieved that



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 141

objective. The objective in (Luke, Hohn et al. 1998) was scaled back to attempt to evolve co-
operative behaviour over hand-coded low-level behaviours. The players in (Andre and
Teller 1999) developed some successful individual behaviours with the use of a
sophisticated composite fitness function, but the objective of collaborative team behaviour
was not realised.

In (Luke 1998b) a team of soccer players with a rich set of innate soccer-playing skills was
developed, using genetic programming and co-evolution, that worked through sub-optimal
behaviour described as “kiddie-soccer” (where all players chase the ball) to reasonable goal-
scoring and defensive behaviour.

A layered learning technique was introduced in (Stone 1998) and (Stone and Veloso 2000),
the essential principle of which is to provide the algorithm with a bottom-up hierarchical
decomposition of a large task into smaller sub-tasks, or layers, and have the algorithm learn
each sub-task separately and feed the output of one learned sub-task into the next layer.

The layered learning technique is based upon the following four principles (Stone and
Veloso 2000):

® A mapping directly from inputs to outputs is not tractably learnable.
® A bottom-up, hierarchical task decomposition is given.

® Machine learning exploits data to train and/or adapt. Learning occurs separately at
each level.

® The output of learning in one layer feeds into the next.

Stone and Veloso used the layered learning technique to produce good results when
training robot soccer players for RoboCupSoccer (Stone and Veloso 2000).

Keepaway Soccer (Stone, Sutton et al. 2001) is a sub-domain of robot soccer in which the
objective is not to score goals but to gain and maintain possession of the ball. There are two
teams in keepaway soccer: the keepers and the takers. The task of the keepers is to maintain
possession of the ball, while the objective of the takers is to take the ball away from the
keepers. The keepaway soccer field is generally smaller than the RoboCupSoccer field, and
no goal areas are required. The keepaway soccer teams are usually smaller than a full team
in RoboCupSoccer, and are often numerically unbalanced (e.g. 3 vs 2 Keepaway Soccer
(Kuhlmann and Stone 2004)).

Gustafson (Gustafson 2000) and Gustafson and Hsu (Gustafson and Hsu 2001; Hsu, Harmon
et al. 2004) applied genetic programming and the layered learning technique of Stone and
Veloso to keepaway soccer. For this method the problem was decomposed into smaller sub-
problems, and genetic programming applied to the sub-problems sequentially - the
population in the last generation of a sub-problem was used as the initial population of the
next sub-problem. The results presented by Gustafson and Hsu indicate that for the problem
studied layered learning in genetic programming outperformed the standard genetic
programming method.

Asada et al. (Asada, Noda et al. 1996) describe the Learning from Easy Missions (LEM)
method, in which a reinforcement learning technique (Q-learning, (Watkins 1989)) is used to
teach a robot soccer player to kick a ball through a goal. The reinforcement learning
technique implemented requires the robot soccer player to be capable of discriminating a
finite set of distinct world states and also be capable of taking one of a finite set of actions.
The robot’s world is then modelled as a Markov process, making stochastic transitions
based on the current state and action taken. A significant problem with this method is that



142 Robot Soccer

for a real robot in the real world, or the simulation of a real robot in the real world, the state
and action spaces are continuous spaces that are not adequately represented by finite sets.
Asada et al. overcome this by constructing a set of sub-states into which the representation
of the robot’s world is divided, and similarly a set of sub-actions into which the robot’s full
range of actions is divided. This is roughly analogous to the fuzzy sets for input variables
and actions implemented for this work.

The LEM method involves using human input to modify the starting state of the soccer
player, beginning with easy states and progressing over time to more difficult states. In this
way the robot soccer player learns easier sub-tasks allowing it to use those learned sub-tasks
to develop more complex behaviour enabling it to score goals in more difficult situations.
Asada et al. concede that the LEM method has limitations, particularly with respect to
constructing the state space for the robot soccer player. Asada et al. also point out that the
method suffers from a lack of historical information that would allow the soccer player to
define context, particularly in the situation where the player is between the ball and the
goal: with only current situation context the player does not know how to move to a
position to shoot the ball into the goal (or even that it should). Some methods suggested by
Asada et al. to overcome this problem are to use task decomposition (i.e. find ball, position
ball between player and goal, move forward, etc.), or to place reference objects on the field
(corner posts, field lines, etc.) to give the player some context. It is also interesting to note
that after noticing that the player performed poorly whenever it lost sight of the ball, Asada
et al. introduced several extra states to assist the player in that situation: the ball-lost-into-
right and ball-lost-into-left states, and similarly for losing sight of the goal, goal-lost-into right
and goal-lost-into-left states. These states, particularly the ball-lost-into-right and ball-lost-into-
left states are analogous to the default hunt actions implemented as part of the work
described in this chapter, and another indication of the need for human expertise to be
injected to adequately solve the problem.

Di Pietro et al. (Di Pietro, While et al. 2002) reported some success using a genetic algorithm
to train 3 keepers against 2 takers for keepaway soccer in the RoboCup soccer simulator.
Players were endowed with a set of high-level skills, and the focus was on learning
strategies for keepers in possession of the ball.

Three different approaches to create RoboCup players using genetic programming are
described in (Ciesielski, Mawhinney et al. 2002) - the approaches differing in the level of
innate skill the players have. In the initial experiment described, the players were given no
innate skills beyond the actions provided by the RoboCupSoccer server. The third
experiment was a variation of the first experiment. Ciesielski et al. reported that the players
from the first and third experiments - players with no innate skills - performed poorly. In
the second experiment described, players were given some innate higher-level hand-coded
skills such as the ability to kick the ball toward the goal, or to pass to the closest teammate.
The players from the second experiment - players with some innate hand-coded skills -
performed a little more adequately than the other experiments described. Ciesielski et al.
concluded that the robot soccer problem is a very difficult problem for evolutionary
algorithms and that a significant amount of work is still needed for the development of
higher-level functions and appropriate fitness measures.

Using keepaway soccer as a machine learning testbed, Whiteson and Stone (Whiteson and
Stone 2003) used neuro-evolution to train keepers in the Teambots domain (Balch 2005). In
that work the players were able to learn several conceptually different tasks from basic skills



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 143

to higher-level reasoning using “concurrent layered learning” - a method in which
predefined tasks are learned incrementally with the use of a composite fitness function. The
player uses a hand-coded decision tree to make decisions, with the leaves of the tree being
the learned skills.

Whiteson et al. (Whiteson, Kohl et al. 2003; Whiteson, Kohl et al. 2005) study three different
methods for learning the sub-tasks of a decomposed task in order to examine the impact of
injecting human expert knowledge into the algorithm with respect to the trade-off between:

® making an otherwise unlearnable task learnable
® the expert knowledge constraining the hypothesis space
® the effort required to inject the human knowledge.

Coevolution, layered learning, and concurrent layered learning are applied to two versions
of keepaway soccer that differ in the difficulty of learning. Whiteson et al. conclude that
given a suitable task decomposition an evolutionary-based algorithm (in this case
neuroevolution) can master difficult tasks. They also conclude, somewhat unsurprisingly,
that the appropriate level of human expert knowledge injected and therefore the level of
constraint depends critically on the difficulty of the problem.

Castillo et al. (Castillo, Lurgi et al. 2003) modified an existing RoboCupSoccer team - the
11Monkeys team (Kinoshita and Yamamoto 2000) - replacing its offensive hand-coded, state
dependent rules with an XCS genetic classifier system. Each rule was translated into a
genetic classifier, and then each classifier evolved in real time. Castillo et al. reported that
their XCS classifier system outperformed the original 11Monkeys team, though did not
perform quite so well against other, more recently developed, teams.

In (Nakashima, Takatani et al. 2004) Nakashima et al. describe a method for learning certain
strategies in the RoboCupSoccer environment, and report some limited success. The method
uses an evolutionary algorithm similar to evolution strategies, and implements mutation as
the only evolutionary operator. The player uses the learned strategies to decide which of
several hand-coded actions will be taken. The strategies learned are applicable only when
the player is in possession of the ball.

Bajurnow and Ciesielski used the SimpleSoccer environment to examine genetic
programming and layered learning for the robot soccer problem (Bajurnow and Ciesielski
2004). Bajurnow and Ciesielski concluded that layered learning is able to evolve goal-scoring
behaviour comparable to standard genetic programs more reliably and in a shorter time, but
the quality of solutions found by layered learning did not exceed those found using
standard genetic programming. Furthermore, Bajurnow and Ciesielski claim that layered
learning in this fashion requires a “large amount of domain specific knowledge and programmer
effort to engineer an appropriate layer and the effort required is not justified for a problem of this
scale.” (Bajurnow and Ciesielski 2004), p.7.

Other examples of research in this or related areas can be found in, for example, (Luke and
Spector 1996) where breeding and co-ordination strategies were studied for evolving teams
in a simple predator/prey environment; (Stone and Sutton 2001; Kuhlmann and Stone 2004;
Stone, Sutton et al. 2005) where reinforcement learning was used to train players in the
keepaway soccer environment; (Lazarus and Hu 2003) in which genetic programming was
used in a specific training environment to evolve goal-keeping behaviour for
RoboCupSoccer; (Aronsson 2003) where genetic programming was used to develop a team
of players for RoboCupSoccer; (Hsu, Harmon et al. 2004) in which the incremental reuse of



144 Robot Soccer

intermediate solutions for genetic programming in the keepaway soccer environment is
studied.

3. The Player

3.1 Player Architecture
The traditional decomposition for an intelligent control system is to break processing into a
chain of information processing modules proceeding from sensing to action (Fig. 1).

Sensors

oyt

Perception
Modelling
Planning
Task Execution
Movement

1L

Actions

Fig. 1. Traditional Control Architecture

The control architecture implemented for this work is similar to the subsumption
architecture described in (Brooks 1985). This architecture implements a layering process
where simple task achieving behaviours are added as required. Each layer is behaviour
producing in its own right, although it may rely on the presence and operation of other
layers. For example, in Fig. 2 the Movement layer does not explicitly need to avoid obstacles:
the Avoid Objects layer will take care of that. This approach creates players with reactive
architectures and with no central locus of control (Brooks 1991).

Detect Ball
Detect Players Actions
Movement
Avoid Objects

Sensors

Fig. 2. Soccer Player Layered Architecture

For the work presented here, the behaviour producing layers are implemented as fuzzy if-
then rules and governed by a fuzzy inference system comprised of the fuzzy rulebase,
definitions of the membership functions of the fuzzy sets operated on by the rules in the
rulebase, and a reasoning mechanism to perform the inference procedure. The fuzzy
inference system is embedded in the player architecture, where it receives input from the
soccer server and generates output necessary for the player to act Fig. 3.



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 145

Rule 1
e
Rule 2

|::>| X is A |—>|yisBz|I::>
[J
[

J
J

Player
Action

Agoregator
Defuzzifier
Action Selector

[ )
Ru’e n

% is A f—a-[yis B, ]| =)

| Soccer Server Information |
Fuzzifier

Fig. 3. Player Architecture Detail

3.1.1 Soccer Server Information

The application by the inferencing mechanism of the fuzzy rulebase to external stimuli
provided by the soccer server results in one or more fuzzy rules being executed and some
resultant action being taken by the client. The external stimuli used as input to the fuzzy
inference system are a subset of the visual information supplied by the soccer server: only
sufficient information to situate the player and locate the ball is used. The environments
studied in this work differ slightly with regard to the information supplied to the player:

¢ In the RoboCupSoccer environment the soccer server delivers regular sense, visual and
aural messages to the players. The player implemented in this work uses only the
object name, distance and direction information from the visual messages in order to
determine its own position on the field and that of the ball. The player ignores any
aural messages, and uses the information in the sense messages only to synchronise
communication with the RoboCupSoccer server. Since the information supplied by the
RoboCupSoccer server is not guaranteed to be complete or certain, the player uses its
relative distance and direction from all fixed objects in its field of vision to estimate its
position on the field. The player is then able to use the estimate of its position to
estimate the direction and distance to the known, fixed location of its goal. The player
is only aware of the location of the ball if it is in its field of vision, and only to the
extent that the RoboCupSoccer server reports the relative direction and distance to the
ball.

e In the SimpleSoccer environment the soccer server delivers only regular visual
messages to the players: there are no aural or sense equivalents. Information supplied
by the SimpleSoccer server is complete, in so far as the objects actually with the
player’s field of vision are concerned, and certain. Players in the SimpleSoccer
environment are aware at all times of their exact location on the field, but are only
aware of the location of the ball and the goal if they are in the player’s field of vision.
The SimpleSoccer server provides the object name, distance and direction information for
objects in a player’s field of vision. The only state information kept by a player in the
SimpleSoccer environment is the co-ordinates of its location and the direction in which
it is facing.



146 Robot Soccer

3.1.2 Fuzzification

Input variables for the fuzzy rules are fuzzy interpretations of the visual stimuli supplied to
the player by the soccer server: the information supplied by the soccer server is fuzzified to
represent the degree of membership of one of three fuzzy sets: direction, distance and power;
and then given as input to the fuzzy inference system. Output variables are the fuzzy
actions to be taken by the player. The universe of discourse of both input and output
variables are covered by fuzzy sets (direction, distance and power), the parameters of which
are predefined and fixed. Each input is fuzzified to have a degree of membership in the
fuzzy sets appropriate to the input variable.

Both the RoboCupSoccer and the SimpleSoccer servers provide crisp values for the
information they deliver to the players. These crisp values must be transformed into
linguistic terms in order to be used as input to the fuzzy inference system. This is the
fuzzification step: the process of transforming crisp values into degrees of membership for
linguistic terms of fuzzy sets. The membership functions shown in Fig. 4 on are used to
associate crisp values with a degree of membership for linguistic terms. The parameters for
these fuzzy sets were not learned by the evolutionary process, but were fixed empirically.
The initial values were set having regard to RoboCupSoccer parameters and variables, and
fine-tuned after minimal experimentation in the RoboCupSoccer environment.

3.1.3 Implication and Aggregation

The core section of the fuzzy inference system is the part which combines the facts obtained
from the fuzzification with the rule base and conducts the fuzzy reasoning process: this is
where the fuzzy inferencing is performed. The FIS model used in this work is a Mamdani
FIS (Mamdani and Assilian 1975). The method implemented to apply the result of the
antecedent evaluation to the membership function of the consequent is the correlation
minimum, or clipping method, where the consequent membership function is truncated at
the level of the antecedent truth. The aggregation method used is the min/max aggregation
method as described in (Mamdani and Assilian 1975). These methods were chosen because
they are computationally less complex than other methods and generate an aggregated
output surface that is relatively easy to defuzzify.

3.1.4 Defuzzification

The defuzzification method used is the mean of maximum method, also employed by
Mamdani’s fuzzy logic controllers. This technique takes the output distribution and finds its
mean of maxima in order to compute a single crisp number. This is calculated as follows:

n Zl'
35
i=1 N

where z is the mean of maximum, z; is the point at which the membership function is
maximum, and # is the number of times the output distribution reaches the maximum level.



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer

147

Distance

YoX T

SlightlyFar Far

Membership

07

0
At VeryNear Near SlightlyNear MediumDistant

0
VeryFar

Power

AN

Membership

0

VeryLow Low  ShightlyLow ~ MedumPower  SlightlyHigh ~ High ~ VeryHigh
1 Direction
(="
=
Zos
g
=
0 I I I I I I I
-180° 0° 180°

Left180 Veryleft Left SightyLelt Straight ShghtlRight Right VeryRight Right180

Fig. 4. Distance, Power and Direction Fuzzy Sets



148 Robot Soccer

An example outcome of this computation is shown in Fig. 5. This method of defuzzification
was chosen because it is computationally less complex than other methods yet produces
satisfactory results.

Smallest of Max.
Largest of Max. Moan of Max

Fig. 5. Mean of Maximum defuzzification method

(Adapted from (Jang, Sun et al. 1997))

3.1.5 Player Actions

A player will perform an action based on its skillset and in response to external stimuli; the
specific response being determined in part by the fuzzy inference system. The action
commands provided to the players by the RoboCupSoccer and SimpleSoccer simulation
environments are described in (Noda 1995) and (Riley 2007) respectively. For the
experiments conducted for this chapter the SimpleSoccer simulator was, where appropriate,
configured for RoboCupSoccer emulation mode.

3.1.6 Action Selection

The output of the fuzzy inference system is a number of (action, value) pairs, corresponding
to the number of fuzzy rules with unique consequents. The (action, value) pairs define the
action to be taken by the player, and the degree to which the action is to be taken. For
example:

(KickTowardGoal, power)
(RunTowardBall, power)
(Turn, direction)

where power and direction are crisp values representing the defuzzified fuzzy set
membership of the action to be taken.

Only one action is performed by the player in response to stimuli provided by the soccer
server. Since several rules with different actions may fire, the action with the greatest level
of support, as indicated by the value for truth of the antecedent, is selected.

3.2 Player Learning

This work investigates the use of an evolutionary technique in the form of a messy-coded
genetic algorithm to efficiently construct the rulebase for a fuzzy inference system to solve a
particular optimisation problem: goal-scoring behaviour for a robot soccer player. The
flexibility provided by the messy-coded genetic algorithm is exploited in the definition and



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 149

format of the genes on the chromosome, thus reducing the complexity of the rule encoding
from the traditional genetic algorithm. With this method the individual player behaviours
are defined by sets of fuzzy if-then rules evolved by a messy-coded genetic algorithm.
Learning is achieved through testing and evaluation of the fuzzy rulebase generated by the
genetic algorithm. The fitness function used to determine the fitness of an individual
rulebase takes into account the performance of the player based upon the number of goals
scored, or attempts made to move toward goal-scoring, during a game.

The genetic algorithm implemented in this work is a messy-coded genetic algorithm
implemented using the Pittsburgh approach: each individual in the population is a complete
ruleset.

4. Representation of the Chromosome

For these experiments, a chromosome is represented as a variable length vector of genes,
and rule clauses are coded on the chromosome as genes. The encoding scheme implemented
exploits the capability of messy-coded genetic algorithms to encode information of variable
structure and length. It should be noted that while the encoding scheme implemented is a
messy encoding, the algorithm implemented is the classic genetic algorithm: there are no
primordial or juxtapositional phases implemented.

The basic element of the coding of the fuzzy rules is a tuple representing, in the case of a
rule premise, a fuzzy clause and connector; and in the case of a rule consequent just the
fuzzy consequent. The rule consequent gene is specially coded to distinguish it from
premise genes, allowing multiple rules, or a ruleset, to be encoded onto a single
chromosome.

For single-player trials, the only objects of interest to the player are the ball and the player’s
goal, and what is of interest is where those objects are in relation to the player. A premise is
of the form:

(Object, Qualifier, {Distance | Direction}, Connector)

and is constructed from the following range of values:

Object: { BALL, GOAL}
Qualifier: { IS, ISNOT}
Distance: { AT, VERYNEAR, NEAR, SLIGHTLYNEAR, MEDIUMDISTANT,

SLIGHTLYFAR, FAR, VERYFAR }
Direction: { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 }
Connector: { AND, OR}

Each rule consequent specifies and qualifies the action to be taken by the player as a
consequent of that rule firing thus contributing to the set of (action, value) pairs output by the

fuzzy inference system. A consequent is of the form:

(Action, {Direction | Null}, {Power | Null})



150 Robot Soccer

and is constructed from the following range of values (depending upon the skillset with
which the player is endowed):

Action: { TURN, DASH, KICK, RUNTOWARDGOAL, RUNTOWARDBALL,
GOTOBALL, KICKTOWARDGOAL, DRIBBLETOWARDGOAL,
DRIBBLE, DONOTHING }

Direction: { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 }

Power: { VERYLOW, LOW, SLIGHTLYLOW, MEDIUMPOWER,
SLIGHTLYHIGH, HIGH, VERYHIGH }

Fuzzy rules developed by the genetic algorithm are of the form:

if Ball is Near and Goal is Near then KickTowardGoal Low
if Ball is Far or Ball is SlightlyLeft then RunTowardBall High

In the example chromosome fragment shown in Fig. 6 the shaded clause has been specially
coded to signify that it is a consequent gene, and the fragment decodes to the following rule:

if Ball is Left and Ball is At or Goal is not Far then Dribble Low

In this case the clause connector OR in the clause immediately prior to the consequent clause
is not required, so ignored.

| (Ball, is Left, And) | (Ball, is At, Or) | (Goal, is not Far, Or) | (Dribble, Null, Low) |

Fig. 6. Messy-coded Genetic Algorithm Example Chromosome Fragment

Chromosomes are not fixed length: the length of each chromosome in the population varies
with the length of individual rules and the number of rules on the chromosome. The
number of clauses in a rule and the number of rules in a ruleset is only limited by the
maximum size of a chromosome. The minimum size of a rule is two clauses (one premise
and one consequent), and the minimum number of rules in a ruleset is one. Since the cut,
splice and mutation operators implemented guarantee no out-of-bounds data in the
resultant chromosomes, a rule is only considered invalid if it contains no premises. A
complete ruleset is considered invalid only if it contains no valid rules. Some advantages of
using a messy encoding in this case are:

e aruleset is not limited to a fixed size

e aruleset can be overspecified (i.e. clauses may be duplicated)

e aruleset can be underspecified (i.e. not all genes are required to be represented)
e clauses may be arranged in any way

An example complete chromosome and corresponding rules are shown in Fig. 7 (with
appropriate abbreviations).



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 151

| BN,0) [ BnFA) | GNA) | ®RBnL) | (B,AA) [(GYNO)|KGnM)| BLA) | (TLn) |

| Premise | Consequent |

Rule 1: if Ball is Near or Ball is not Far and Goal is Near then RunTowardBall Low
Rule 2: if Ball is At and Goal is VeryNear then KickTowardGoal MediumPower
Rule 3: if Ball is Left then Turn Left

Fig. 7. Chromosome and corresponding rules

In contrast to classic genetic algorithms which use a fixed size chromosome and require
“don’t care” values in order to generalise, no explicit don’t care values are, or need be,
implemented for any attributes in this method. Since messy-coded genetic algorithms
encode information of variable structure and length, not all attributes, particularly premise
variables, need be present in any rule or indeed in the entire ruleset. A feature of the messy-
coded genetic algorithm is that the format implies don’t care values for all attributes since
any premise may be omitted from any or all rules, so generalisation is an implicit feature of
this method.

For the messy-coded genetic algorithm implemented in this work the selection operator is
implemented in the same manner as for classic genetic algorithms. Roulette wheel selection
was used in the RoboCupSoccer trials and the initial SimpleSoccer trials. Tests were
conducted to compare several selection methods, and elitist selection was used in the
remainder of the SimpleSoccer trials. Crossover is implemented by the cut and splice
operators, and mutation is implemented as a single-allele mutation scheme.

5. Experimental Evaluation

A series of experiments was performed in both the RoboCupSoccer and the SimpleSoccer
simulation environments in order to test the viability of the fuzzy logic-based controller for
the control of the player and the genetic algorithm to evolve the fuzzy ruleset. The following
sections describe the trials performed, the parameter settings for each of the trials and other
fundamental properties necessary for conducting the experiments.

An initial set of 20 trials was performed in the RoboCupSoccer environment in order to
examine whether a genetic algorithm can be used to evolve a set of fuzzy rules to govern the
behaviour of a simulated robot soccer player which produces consistent goal-scoring
behaviour. This addresses part of the research question examined by this chapter.

Because the RoboCupSoccer environment is a very complex real-time simulation
environment, it was found to be prohibitively expensive with regard to the time taken for
the fitness evaluations for the evolutionary search. To overcome this problem the
SimpleSoccer environment was developed so as to reduce the time taken for the trials.
Following the RoboCupSoccer trials, a set of similar trials was performed in the
SimpleSoccer environment to verify that the method performs similarly in the new
environment.

Trials were conducted in the SimpleSoccer environment where the parameters controlling
the operation of the genetic algorithm were varied in order to determine the parameters that
should be used for the messy-coded genetic algorithm in order to produce acceptable
results.



152 Robot Soccer

5.1 Trials

For the results reported, a single trial consisted of a simulated game of soccer played with
the only player on the field being the player under evaluation. The player was placed at a
randomly selected position on its half of the field and oriented so that it was facing the end
of the field to which it was kicking. For the RoboCupSoccer trials the ball was placed at the
centre of the field, and for the SimpleSoccer trials the ball was placed at a randomly selected
position along the centre line of the field.

5.2 Fitness Evaluation

The objective of the fitness function for the genetic algorithm is to reward the fitter
individuals with a higher probability of producing offspring, with the expectation that
combining the fittest individuals of one generation will produce even fitter individuals in
later generations. All fitness functions implemented in this work indicate better fitness as a
lower number, so representing the optimisation of fitness as a minimisation problem.

5.2.1 RoboCupSoccer Fitness Function

Since the objective of this work was to produce goal-scoring behaviour, the first fitness
function implemented rewarded individuals for goal-scoring behaviour only, and was
implemented as:

1.0 ,goals =0

f= 1.0

— ,goals >0
2.0 x goals

where goals is the number of goals scored by the player during the trial.

Equation 1 RoboCupSoccer Simple Goals-only Fitness Function

In early trials in the RoboCupSoccer environment the initial population of randomly
generated individuals demonstrated no goal-scoring behaviour, so the fitness of each
individual was the same across the entire population. This lack of variation in the fitness of
the population resulted in the selection of individuals for reproduction being reduced to
random choice. To overcome this problem a composite fitness function was implemented
which effectively decomposes the difficult problem of evolving goal-scoring behaviour
essentially from scratch - actually from the base level of skill and knowledge implicit in the
primitives supplied by the environment - into two less difficult problems:

¢ evolve ball-kicking behaviour, and
e evolve goal-scoring behaviour from the now increased base level of skill and
knowledge

In the RoboCupSoccer trials, individuals were rewarded for, in order of importance:

e the number of goals scored in a game
e the number of times the ball was kicked during a game



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 153

This combination was chosen to reward players primarily for goals scored, while players
that do not score goals are rewarded for the number of times the ball is kicked on the
assumption that a player which actually kicks the ball is more likely to produce offspring
capable of scoring goals. The actual fitness function implemented in the RoboCupSoccer
trials was:

1.0 L kicks =0
,goals =0
1.0 — __kicks kicks > 0
f: 2.0 x ticks
1.0 ,goals >0
2.0 x goals

where
goals = the number of goals scored by the player during the trial
kicks the number of times the player kicked the ball during the trial
ticks the number of RoboCupSoccer server time steps of the trial

Equation 2 RoboCupSoccer Composite Fitness Function

5.2.2 SimpleSoccer Fitness Function
A similar composite fitness function was used in the trials in the SimpleSoccer environment,
where individuals were rewarded for, in order of importance:

o the number of goals scored in a game
¢ minimising the distance of the ball from the goal

This combination was chosen to reward players primarily for goals scored, while players
that do not score goals are rewarded on the basis of how close they are able to move the ball
to the goal on the assumption that a player which kicks the ball close to the goal is more
likely to produce offspring capable of scoring goals. This decomposes the original problem
of evolving goal-scoring behaviour into the two less difficult problems:

e evolve ball-kicking behaviour that minimises the distance between the ball and goal
e evolve goal-scoring behaviour from the now increased base level of skill and

knowledge
The actual fitness function implemented in the SimpleSoccer trials was:
1.0 Lkicks =0
,goals =0
0.5+ dist kicks > 0
f = 2.0x fieldLen
1.0 ,goals >0
2.0 x goals
where
goals = the number of goals scored by the player during the trial
kicks = the number of times the player kicked the ball during the trial
dist = the minimum distance of the ball to the goal during the trial
fieldLen = the length of the field

Equation 3 SimpleSoccer Composite Fitness Function



154 Robot Soccer

The difference between the composite fitness function implemented in the RoboCupSoccer
environment and the composite fitness function implemented in the SimpleSoccer
environment is just an evolution of thinking - rewarding a player for kicking the ball often
when no goal is kicked could reward a player that kicks the ball very often in the wrong
direction more than a player that kicks the ball fewer times but in the right direction. The
SimpleSoccer implementation of the composite fitness function rewards players more for
kicking the ball closer to the goal irrespective of the number of times the ball was kicked.
This is considered a better approach to encourage behaviour that leads to scoring goals.

5.2.3 Fitness Values

To facilitate the interpretation of fitness graphs and fitness values presented throughout this
chapter, following is an explanation of the fitness values generated by the fitness functions
used in this work. All fitness functions implemented in this work generate a real number R,
where 0.0<R<1.0, R=1.0 indicates no ball movement and R ~ 0.0 indicates very good
performance - smaller fitness values indicate better performance.

For ball movement in the RoboCupSoccer environment where a composite fitness function
is implemented, fitness values are calculated in the range x <R <y, where x=0.5 and

y=1.0. For ball movement in the SimpleSoccer environment where a composite fitness
function is implemented, fitness values are calculated in the range x < R < y, where x~ 0.5
and y ~0.77. Where a simple goals-only fitness function is implemented, ball movement

alone is not rewarded: if no goals are scored the fitness function assigns R =1.0. In both
environments all fitness functions assign discrete values for goal-scoring, depending upon
the number of goals scored. Table 1 summarises the fitness values returned by the various
fitness functions.

Simple RoboCupSoccer SimpleSoccer
Goals-only Composite Composite
Fitness Function | Fitness Function | Fitness Function
No No Ball 1.0000 1.0000 1.0000
Goals Bl nt
Scored n/a [0.5,1.0] [~0.5, ~0.77]
Movement
1 0.5000 0.5000 0.5000
2 0.2500 0.2500 0.2500
3 0.1667 0.1667 0.1667
4 0.1250 0.1250 0.1250
5 0.1000 0.1000 0.1000
Goals 6 0.0833 0.0833 0.0833
Scored 7 0.0714 0.0714 0.0714
8 0.0625 0.0625 0.0625
9 0.0556 0.0556 0.0556
10 0.0500 0.0500 0.0500
n 0.5/n 05/n 05/n

Table 1. Fitness Assignment Summary




Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 155

Parameter [Value
Maximum Chromosome Length 64 genes
IPopulation Size 200

IMaximum Generations 25

Selection Method Roulette Wheel
Crossover Method Single Point
Crossover Probability 0.8

Mutation Rate 10%

IMutation Probability 0.35

Table 2. Genetic Algorithm Control Parameters

In initial trials in the RoboCup environment players were evaluated over five separate
games and then assigned the average fitness value of those games. Since each game in the
Robocup environment is played in real time, this was a very time consuming method. The
results of experiments where the player’s fitness was calculated as the average of five games
were compared with results where the player’s fitness was assigned after a single game and
were found to be almost indistinguishable. Due to the considerable time savings gained by
assigning fitness after a single game, this is the method used throughout this work. Since
players evolved using the average fitness method are exposed to different starting
conditions they may be more robust than those evolved using single-game fitness, but the
effect is extremely small considering the number of different starting positions players could
be evaluated against and the fact that the starting positions of the player and ball really only
affect the first kick of the ball.

5.3 Control Parameters
The genetic algorithm parameters common to all 20 initial trials in both the RoboCupSoccer
and SimpleSoccer environments are shown in Table 2.
A game was terminated when:
o the target fitness of 0.05 was reached
o the ball was kicked out of play (RoboCupSoccer only)
o the elapsed time expired:
o 120 seconds real time for RoboCupSoccer
o 1000 ticks of simulator time for SimpleSoccer
e A period of no player movement or action expired
o 10 seconds real time for RoboCupSoccer
o 100 ticks of simulator time for SimpleSoccer

The target fitness of 0.05 reflects a score of 10 goals in the allotted playing time. This figure
was chosen to allow the player a realistic amount of time to develop useful strategies yet
terminate the search upon finding an acceptably good individual.

Two methods of terminating the evolutionary search were implemented. The first stops the
search when a specified maximum number of generations have occurred; the second stops
the search when the best fitness in the current population becomes less than the specified
target fitness. Both methods were active, with the first to be encountered terminating the
search. Early stopping did not occur in any of the experiments reported in this chapter.



156 Robot Soccer

6. Results

The following sections describe the results for the experiments performed for both the
RoboCupSoccer and the SimpleSoccer environments. Discussion and analysis of the results
is also presented.

6.1 RoboCupSoccer Initial Trial Results

Fig. 8 shows the average fitness of the population after each generation for each of the 20
trials for the RoboCupSoccer environment, showing that the performance of the population
does improve steadily and, in some of the trials, plateaus towards a fitness of 0.5, or goal-
scoring behaviour. Fig. 9 shows the best individual fitness from the population after each
generation for each of 20 trials for the RoboCupSoccer environment, showing that good
individuals are found after very few generations, in contrast to the gradual improvement in
average fitness shown in Fig. 8.

Fig. 10 is another visualisation of the progressive learning of the population from generation
to generation, showing that not only do more players learn to kick goals over time, they
learn to kick more goals more quickly. The histogram shows, for the initial 20
RoboCupSoccer trials, the average percentage of the population which scored 0, 1, 2, 3, 4 or
more than 4 goals for each generation. The maximum number of goals scored by any
individual was 3.

0 T T T T T
1 5 9 13 17 21 25

Generation

Fig. 8. RoboCupSoccer: Average Fitness - Initial 20 Trials

6.2 SimpleSoccer Initial Trial Results

Fig. 11 shows the average fitness of the population after each generation for each of the 20
trials for the SimpleSoccer environment, and as for the RoboCupSoccer trials, this graph
shows that the performance of the population does improve steadily and plateaus, but
unlike the RoboCupSoccer trials the average performance of the population does not
approach a fitness of 0.5, or goal-scoring behaviour. Fig. 11 also shows that the average
fitness curves for the SimpleSoccer trials are more tightly clustered than those of the



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 157

RoboCupSoccer trials, and plateau towards a fitness of around 0.75 which, in the
SimpleSoccer environment indicates ball-kicking behaviour rather than goal-scoring
behaviour.

Fitness

. 21
Generation 25

Fig. 9. RoboCupSoccer: Best Fitness - Initial 20 Trials

[J0 Goals [0 1 Goal 12 Goals [03 Goals W4 Goals >4 Goals

100% — T —— ]

75% 1

50%

Percentage
l
l

25%

0%
1 5 9 13 17 21 25
Generation

Fig. 10. RoboCupSoccer: Frequency of Individuals Scoring Goals

Fig. 12 shows the best individual fitness from the population after each generation for each
of 20 trials for the SimpleSoccer environment and, as for the RoboCupSoccer trials, this
graph shows that good individuals are found after very few generations. It is evident from a
comparison of Fig. 9 and Fig. 12 that while good individuals are found quickly in both



158 Robot Soccer

environments, the algorithm seems to be more stable in the RoboCupSoccer environment.
The data shows that once a good individual is found in the RoboCupSoccer environment,
good individuals are then more consistently found in future generations than in the
SimpleSoccer environment.

Fig. 13 shows, for the initial 20 SimpleSoccer trials, the average percentage of the population
which scored 0, 1, 2, 3, 4 or more than 4 goals for each generation. The maximum number of
goals scored by an individual was 10. The contrast with the equivalent graph for the
RoboCupSoccer environment (Fig. 10) is striking since, although some individuals in the
SimpleSoccer environment scored more goals than any individual in the RoboCupSoccer
environment, the average goal-scoring behaviour of the population was less developed in
the SimpleSoccer environment. This inconsistency is likely to be an indication that the
combination of parameters used for the SimpleSoccer environment causes the genetic
algorithm to converge more quickly than in the RoboCupSoccer environment, and a
possible explanation for the lower average performance of the population when compared
to that of the RoboCupSoccer environment as seen in Fig. 11. Since these SimpleSoccer
experiments were performed primarily as a comparison with the RoboCupSoccer
experiments the genetic algorithm parameters were kept the same, but the soccer simulator
implementations differ considerably and no tuning of simulator parameters to ensure
similar performance was performed.

1 \
\\\¥ ==
0.75 1 e —e————— e
—————
v
w2
19}
é 0.5 1
S
0.25
0 T T T T T
1 5 9 13 17 21 25

Generation
Fig. 11. SimpleSoccer: Average Fitness - Initial 20 Trials

6.3 SimpleSoccer as a Model for RoboCupSoccer

While the difference in the results of the experiments in the RoboCupSoccer and
SimpleSoccer environments indicate that SimpleSoccer is not an exact model of
RoboCupSoccer (as indeed it was not intended to be), there is a broad similarity in the
results which is sufficient to indicate that the SimpleSoccer environment is a good simplified
model of the RoboCupSoccer environment. Because SimpleSoccer is considered a reasonable
model for RoboCupSoccer, and to take advantage of the significantly reduced training times
provided by the SimpleSoccer environment when compared to RoboCupSoccer, all results



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 159

reported in the remainder of this chapter are for experiments conducted exclusively in the
SimpleSoccer environment.

Fitness

. 21
Generation 25

Fig. 12. SimpleSoccer: Best Fitness - Initial 20 Trials

00 Goals [ 1 Goal 02 Goals @ 3 Goals B 4 Goals E >4 Goals
100% —

75% 7

50% 7

Percentage

25% A

0%
1 5 9 13 17 21 25
Generation

Fig. 13. SimpleSoccer: Frequency of Individuals Scoring Goals



160 Robot Soccer

6.4 GA Parameter Determination
Several experiments were conducted in order to determine a set of genetic algorithm

parameters conducive to producing acceptable results. The following GA parameters were
varied in these trials:

¢ Maximum Chromosome Length
¢ Population Size

e Selection Method

e Crossover Method

e Mutation Rate

¢ Maximum Generations

The values for the parameters shown in Table 2 on are used as control values, and in each of
the trials presented in the following sections the value for a single GA parameter is varied.
In the experiments conducted a series of 10 trials was performed for each different value of
the parameter being varied, and in each case, with the exception of the experiment varying
the maximum number of generations, the results presented are the averages of the 10 trials -
each line on the graphs shown represents the average of the 10 trials. For the experiment
varying the maximum number of generations, only 10 trials were conducted, and the results
for each trial is reported individually - each line on the graph represents a single trial.

1
40 50 —75 —100
0.75 —— e —
12}
72}
O
g 0.5
=
[ 9
0.25
0 T T T T T
1 5 9 13 17 21 25

Generation

Fig. 14. Average Fitness: Maximum Chromosome Length Variation

6.4.1 Maximum Chromosome Length

While the actual length of the chromosome, measured as the number of genes on the
chromosome, may vary depending upon the location of the cut point during the cut-and-
splice operation of crossover, the maximum length of the chromosome is fixed throughout
the evolutionary process. In order to determine if the maximum length of the chromosome
is a significant factor in determining the quality of the evolutionary search, and if so what
value is a good value, a series of trials was performed with different maximums for the
chromosome length. Fig. 14 shows the average fitness of the population throughout the



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 161

evolutionary process. It is evident from Fig. 14 that while a maximum chromosome length
of 100 offers a very slight advantage, it is not significant. This is further substantiated by Fig.
15 which shows the best fitness in the population throughout the evolutionary process. The
results shown indicate that while the method is not sensitive in any significant way to
variations in the maximum chromosome length, a maximum chromosome length of
somewhere between 50 and 100 genes, and most probably between 50 and 75 genes,
produces less variation in the best fitness over the duration of the process.

E50 B 100 W75 W30 @340

Generation 25

Fig. 15. Best Fitness: Maximum Chromosome Length Variation

Since the actual chromosome length may vary up to the maximum, the average
chromosome length for each of the variations in maximum length was measured
throughout the evolutionary process, as was the average number of valid rules per
chromosome. These data are shown in Fig. 16 and Fig. 17 respectively. The chromosome
lengths in the initial populations are initialised randomly between the minimum length of
two genes (the smallest number of genes for a valid ruleset) and the maximum chromosome
length, so the average chromosome lengths for the initial population shown in Fig. 16 are as
expected. All trials show the average chromosome length rising in the initial few
generations, then settling to around two-thirds of the maximum length. Given this, and
since single-point crossover was used in these trials, with the cut point chosen randomly
and chromosomes truncated at the maximum length after the cut-and-splice operation, the
results indicate that chromosome length is unaffected by selection pressure. However, Fig.
17 shows the average number of rules per chromosome rising for all of the trials. This would
indicate that there is some selection pressure for more rules per chromosome or shorter
rules, but since the chromosome length is bounded, so is the number of rules per
chromosome. Though outside the scope of this chapter, some further trials to investigate
whether the pressure is for more rules or shorter rules, and the optimum number and/or
length of rules per chromosome, would be useful work to undertake in the future.



162 Robot Soccer

—30 —40 —50 —75 —100

75

Number of Genes

1 5 9 13 17 21 25
Generation
Fig. 16. Average Chromosome Length: Maximum Chromosome Length Variation

0

6.4.2 Population Size
Since the size of the population differs in this experiment, the number of generations was

also varied according to the population size for each set of 10 trials to ensure the comparison
between population sizes was for the same number of evaluations. Fig. 18 shows the
average fitness of the population over 10,000 evaluations, and Fig. 19 shows the best fitness
values for the same trials. It can be seen from the graphs that varying the population size
has little effect on the population average fitness with only marginally better results for
smaller population sizes, and a similarly small effect on individual best fitness, with larger
populations producing slightly more stable results.

—30 —40 —50 —75 —100

7.5

Number of Rules

25

1 5 9 13 17 21 25
Generation

Fig. 17. Average Valid Rules per Chromosome: Maximum Chromosome Length Variation



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 163

Overall, the difference in performance between the population sizes tested is not significant,
suggesting that it is the number of solutions evaluated, or the extent of the search, that is a
significant factor affecting performance. This is consistent with the findings of other work in

the area (Luke 2001).

—25 50 100 =200 —300 400

0.5

Fitness

0
0 2000 4000 6000 8000 10000
Evaluations

Fig. 18. Average Fitness: Population Size Variation

0400 300 @200 @100 @50 W25

Fitness

Evaluations

Fig. 19. Best Fitness: Population Size Variation



164 Robot Soccer

6.4.3 Selection Methods

Trials were conducted to compare the performance of three methods of selection: roulette
wheel selection, tournament selection with tournament size = 2 and tournament selector =
0.75, and elitist selection with 5% retention. The population average fitness for the 10 trials
conducted for each method is shown in Fig. 20, and shows clearly that in terms of the
population average fitness the method of selection is not a significant determinant. Fig. 21
shows the best fitness curves for these trials and shows that the elitist method produces
similar results to the tournament method, with the roulette wheel method producing
slightly less stable results. The good performance of the elitist method is probably due to the
stochastic nature of the environment. Since the placement of the ball and the player is
random, a player evaluated twice would likely be assigned different fitness values for each
evaluation. The elitist method works well in this type of environment, allowing the better
solutions to be evaluated several times thus allowing the reliability of the estimate of fitness
to increase over time.

6.4.4 Crossover Methods

Since the chromosomes involved in crossover may be of different lengths, crossover
methods that assume equal length chromosomes are not defined. The performance of two
methods of crossover was compared: one-point and two-point. Fig. 22 shows the population
average fitness over the duration of the evolutionary process, and Fig. 23 shows the best
fitness values for the same period. It can be seen from this data that there is no meaningful
difference in performance between the two methods, either with respect to the population
average fitness or the best fitness achieved. While two-point crossover is more disruptive
than one-point crossover, it is not clear from this data if a much more disruptive crossover
method, such as uniform crossover, would significantly affect the performance of the
method. It is likely that the messy-coding of the genetic algorithm and the rules-based
nature of the representation causes the method to be somewhat less sensitive to disruptive
Crossover.

— Roulette = Tournament = Elitist

0.75

Fitness
[=]
s
.

0.25 7

0 T T T T T

Generation
Fig. 20. Average Fitness: Selection Method Variation



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 165

M Tournament M Elitist B Roulette

0.75

0.5

Fitness

0.25

13

Generation 17 21
25
Fig. 21. Best Fitness: Selection Method Variation
— One-point = Two-point
1
0.75
»
3
£051
Z
0.25
0
1 5 9 13 17 21 25
Generation

Fig. 22. Average Fitness: Crossover Method Variation

6.4.4 Mutation Rate

To determine the effect of the rate of mutation on the evolutionary process, 10 trials for each
of several mutation rates were performed, and the averages of those trials presented. Fig. 24
shows the population average fitness for each mutation rate tested, and Fig. 25 the best
fitness for those mutation rates throughout the evolutionary search. While varying the
mutation rate has only a marginal effect on the population average fitness and, for the most



166 Robot Soccer

part the individual best fitness, a mutation rate of 15% does seem to improve the population
average fitness slightly, and the individual best fitness more markedly. This suggests that a
mutation rate of 15% is the best balance between maintaining sufficient diversity in the
population to help drive the evolutionary process while minimising the disruption to the

good building blocks being created throughout the process.

B Two-point B One-point

Fitness

Generation 21
25

Fig. 23. Best Fitness: Crossover Method Variation

5% 10% ©° 15% 20% —25% 30% 35% —40% 45% —50%

2
£ 05
2
0.25
0 T T T T T T
1 4 7 10 13 16 19 22 25
Generation

Fig. 24. Average Fitness: Mutation Rate Variation



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 167

015% W5% ®40% [O45% B50%
030% B10% B20% B25% B35%

0.75

0.25

Generation

Fig. 25. Best Fitness: Mutation Rate Variation

0.75 1 °

v
&
£ 0.5 -
Z

0.25

0 . . . . . . . . . .
1 10 19 28 37 46 55 64 73 82 91 100
Generation

Fig. 26. Average Fitness: 100 Generations

6.4.4 Maximum Generations

In order to determine the effect of allowing the evolutionary process to continue for an
extended time, a series of 10 trials was conducted with each trial continuing the
evolutionary process for 100 generations. Two graphs of the results of these trials are
presented. Fig. 26 shows the average fitness of the population for each of the 10 trials, and it
can be seen that for more than half the trials the average fitness does not improve
significantly after the tenth generation. Fig. 27 shows the best individual fitness from the
population after each generation for each of the trials, and presents a similar scenario to that
of the average fitness values: the best fitness does not improve significantly in most of the



168 Robot Soccer

trials after the first few generations, though for a small proportion of the trials some
significantly fitter individuals are evolved. These graphs suggest that although for some
instances continuing to allow the population to evolve for an extended period can produce
an improved population average, and that in those instances the best performing
individuals from the population are consistently better, there is no real advantage in
extending the evolutionary process. In almost every case an individual from the first 10 to 15
generations achieved the equal best fitness seen over the 100 generations, so given that the
objective is to find good goal-scoring behaviour there would seem to be no real advantage in
extended evolution of the population. This is a similar to the result reported in (Luke 2001),
where Luke suggests that for some problems genetic programming encounters a critical
point beyond which further evolution yields no improvement. Luke further suggests that
performing many shorter experiments is likely to produce better results than a single very
long experiment.

Generation

Fig. 27. Best Fitness: 100 Generations

6.4.5 Gene Pools

The trials reported in the previous section provide an opportunity to study, in broad terms,
the genetic makeup of the population being evolved. For each of the 100 generations, Fig. 28
shows the average number of genes per chromosome, premises per chromosome, rules per
chromosome, and valid rules per chromosome, with standard deviations for each. This
graph shows that average chromosome length does not grow uncontrollably, and in fact
plateaus at about 2/3 the maximum possible length. The average number of rules per
chromosome, and hence the average number of consequents per chromosome, grows
steadily throughout the evolutionary run. This agrees with the data presented earlier for the
maximum chromosome length variation trials. It is interesting to note that the number of
rules per chromosome is still increasing after 100 generations. Since the minimum number
of genes per rule is 2 the number of rules per chromosome is bounded by half the



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 169

chromosome length, and although the graph shows the number of rules approaching the
upper bound, it has not reached that figure after 100 generations. Though outside the scope
of this chapter, some more experimentation to observe the effect of reaching the upper
bound would be useful work to undertake in the future.

Peg’OChromosome: — Genes — Premises — Rules — Valid Rules

Count

20

0 ! ! ! ! ! ! ! ! !
1 10 19 28 37 46 55 64 73 82 91 100
Generation

Fig. 28. Population Composition Mean and Standard Deviation: 100 Generations

400
— Total Gene Pool — Unique Premise Pool — Unique Consequent Pool

300 A

Pool Size
g

Generation

Fig. 29. Gene Pools: 100 Generations

The population gene pool sizes throughout the evolutionary process are show in Figure 29.
The graph shows raw numbers of unique premise genes, unique consequent genes, and the
total gene pool available to each generation of individuals. It is evident from the graph that



170 Robot Soccer

the pool of unique premises falls slowly, but steadily, from the first generation, while the
pool of unique consequent genes stays reasonably constant for close to 40 generations after
an initial decrease. This is not unexpected, and is an indication that some selection pressure
is evident, but that the number of rules remains fairly constant.

6.5 Performance Comparison — GA vs Random Search

In this section, in order to gauge the relative difficulty of the problem, the results obtained
using the messy-coded GA search are compared to results obtained from random search.
The messy-coded GA results shown are the average of the 10 trials conducted for the
“maximum generations” experiments described earlier. The random search technique was
simply the random generation and evaluation of a “population” of 500 individuals repeated
40 times - to equal the number of evaluations completed for the messy-coded GA trials. The
“population” average fitness is shown in Fig. 30, and the best individual fitness at intervals
of 500 evaluations is shown in Fig. 31. The average fitness curves are included only to
illustrate that the genetic algorithm is able to consistently improve the quality of the
population for the duration of the evolutionary process: random search would not be
expected to perform in the same manner. The best fitness curves (Fig. 31) show that
although random search is able to find individuals that exhibit goal-scoring behaviour
(i.e. fitness<(0.5), evolutionary search finds better individuals and finds them more
consistently, indicating that evolutionary search is not only a more successful search
technique than random search, it is more robust.

— Messy GA — Random Search

0.75

0.5

Fitness

0.25

0
0 4000 8000 12000 16000 20000
Evaluations
Fig. 30. Average Fitness: Random Search Comparison

As noted, random search does successfully find individuals with reasonably good goal-
scoring skills. This result is a little surprising at first glance, but on closer inspection of the
problem an explanation does present itself - the problem of finding goal-scoring behaviour
in the solution space defined, whether by evolutionary search or random search, is not as
difficult as it first seems, and this is because the solution space defined is not the one



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 171

envisaged when first considering the problem. The solution space defined is one populated
by players with mid-level, hand-coded skills available to them, as well as a “smart” default
hunt action, which is a much richer solution space than the one usually envisaged when
considering the problem of evolving goal-scoring behaviour “from scratch”. As evidenced
by the results of the random search shown here, the density of “reasonably good” solutions
in the solution space is sufficiently high that random search will occasionally, and with
some consistency, find one of those “reasonably good” solutions.

B Messy GA M Random Search

0.75

0.5

Fitness

Evaluations
20000

Fig. 31. Best Fitness: Random Search Comparison

7. Summary and Discussion

The work presented in this chapter has provided an implementation and empirical analysis
of a fuzzy logic-based robot soccer player and the messy-coded genetic algorithm training
algorithm. Several trials were performed to test the capacity of the method to produce goal-
scoring behaviour. The results of the trials performed indicate that the player defined by the
evolved fuzzy rules of the controller is capable of displaying consistent goal-scoring
behaviour. This outcome indicates that for the problem of developing goal-scoring
behaviour in a simulated robot soccer environment, when the initial population is endowed
with a set of mid-level hand-coded skills, taking advantage of the flexible representation
afforded by the messy-coded genetic algorithm and combining that with a fuzzy logic-based
controller enables a fast and efficient search technique to be constructed.

Several experiments were performed to vary the genetic algorithm parameters being
studied. The results of those tests indicate that within the range of the values tested, most
parameters have little effect on the performance of the search. The Maximum Chromosome
Length and Selection Method parameters had a marginal influence over the efficacy of the
search, and although better performance was sometimes achieved after a long period of
evolution, the Maximum Generations parameter is not considered to have a large effect on the
performance of the algorithm after an upper bound of about 15 generations.



172 Robot Soccer

8. References

Andre, D. and A. Teller (1999). Evolving Team Darwin United. M. Asada and H. Kitano eds,
RoboCup-98: Robot Soccer World Cup II. Lecture Notes in Computer Science,
Springer-Verlag.

Aronsson, J. (2003). Genetic Programming of Multi-agent System in the RoboCup Domain.
Masters Thesis, Department of Computer Science. Lund, Sweden, Lund Institute of
Technology.

Asada, M., S. Noda, et al. (1996). "Purposive Behavior Acquisition for a Real Robot by
Vision-Based Reinforcement Learning." Machine Learning 23(2-3): 279-203.
Bajurnow, A. and V. Ciesielski (2004). Layered Learning for Evolving Goal Scoring
Behaviour in Soccer Players. G. Greenwood, ed., Proceedings of the 2004 Congress

on Evolutionary Computation, Vol. 2, p. 1828-1835, IEEE.

Balch, T. (2005). Teambots Domain, http:/ /www.teambots.org.

Brooks, R. (1985). Robust Layered Control System for a Mobile Robot. A.I. Memo 864,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory.

Brooks, R. (1991). "Intelligence Without Representation." Artificial Intelligence 47: 139-159.

Castillo, C., M. Lurgi, et al. (2003). Chimps: An Evolutionary Reinforcement Learning
Approach for Soccer Agents. Proceedings of the 2003 IEEE International
Conference on Systems, Man and Cybernetics, Vol. 1, p. 60-65.

Ciesielski, V. and S. Y. Lai (2001). Developing a Dribble-and-Score Behaviour for Robot
Soccer using Neuro Evolution. Proceedings of the Fifth Australia-Japan Joint
Workshop on Intelligent and Evolutionary Systems, p. 70-78, Dunedin, New
Zealand.

Ciesielski, V., D. Mawhinney, et al. (2002). Genetic Programming for Robot Soccer.
Proceedings of the RoboCup 2001 Symposium. Lecture Notes in Artificial
Intelligence, p. 319-324.

Ciesielski, V. and P. Wilson (1999). Developing a Team of Soccer Playing Robots by Genetic
Programming. Proceedings of the Third Australia-Japan Joint Workshop on
Intelligent and Evolutionary Systems, p. 101-108, Canberra, Australia.

Di Pietro, A., L. While, et al. (2002). Learning in RohoCup Keepaway Using Evolutionary
Algorithms. Langdon et al.,, eds, Proceedings of the Genetic and Evolutionary
Computation Conference, p. 1065-1072, New York, NY, Morgan Kaufmann.

Gustafson, S. M. (2000). Layered Learning in Genetic Programming for a Cooperative Robot
Soccer Problem. Masters Thesis, Department of Computing and Information
Science, College of Engineering. Manhattan, KS, Kansas State University.

Gustafson, S. M. and W. H. Hsu (2001). Layered Learning in Genetic Programming for a Co-
operative Robot Soccer Problem. Proceedings of the Fourth European Conference
on Genetic Programming, Lake Como, Italy, Springer.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, The University
of Michigan Press.

Hsu, W. H,, S. J. Harmon, et al. (2004). Empirical Comparison of Incremental Reuse
Strategies in Genetic Programming for Keep-Away Soccer. Late Breaking Papers of
the 2004 Genetic and Evolutionary Computation Conference, Seattle WA.

Jang, J.-S., C.-T. Sun, et al. (1997). Neuro-Fuzzy and Soft Computing, Prentice Hall.

Kandel, A. (1986). Fuzzy Mathematical Techniques with Applications, Addison-Wesley,
Reading MA.



Evolving Fuzzy Rules for Goal-Scoring Behaviour in Robot Soccer 173

Kinoshita, S. and Y. Yamamoto (2000). 11Monkeys Description. Veloso et al., eds,
Proceedings of Robocup-99: Robot Soccer World Cup III. Lecture Notes In
Computer Science, Vol. 1856, p. 550-553, Springer-Verlag, London.

Kitano, H., M. Asada, et al. (1997a). RoboCup: The Robot World Cup Initiative. Proceedings
of the First International Conference on Autonomous Agents, p. 340-347, Marina
Del Rey, CA.

Kitano, H., M. Asada, et al. (1997b). RoboCup: A Challenge Problem for Al. Al Magazine,
18(1): p.73-85.18.

Kitano, H., M. Tambe, et al. (1997). The RoboCup Synthetic Agent Challenge 97. Proceedings
of the Fifteenth International Joint Conference on Artificial Intelligence, p. 24-29,
Nagoya, Japan.

Klir, G.]J. and T. A. Folger (1988). Fuzzy Sets, Uncertainty and Information, Prentice Hall.

Kruse, R., J. Gebhardt, et al. (1994). Foundations of Fuzzy Systems, Wiley.

Kuhlmann, G. and P. Stone (2004). Progress in Learning 3 vs. 2 Keepaway. D. Polani et al.,
eds, RoboCup-2003: Robot Soccer World Cup VII, Springer Verlag, Berlin.

Lazarus, C. and H. Hu (2003). Evolving Goalkeeper Behaviour for Simulated Soccer
Competition. Proceedings of the Third IASTED International Conference on
Artificial Intelligence and Applications, Benalmadena, Spain.

Lima, P., L. Custédio, et al. (2005). RoboCup 2004 Competitions and Symposium: A Small
Kick for Robots, a Giant Score for Science. Al Magazine 6(2). 6.

Luke, S. (1998a). Evolving SoccerBots: A Retrospective. Proceedings of the Twelfth Annual
Conference of the Japanese Society for Artificial Intelligence, Tokyo, Japan.

Luke, S. (1998b). Genetic Programming Produced Competitive Soccer Softbot Teams for
RoboCup97. J. Koza et al, eds, Proceedings of the Third Annual Genetic
Programming Conference, p. 204-222, Morgan Kaufmann, San Francisco.

Luke, S. (2001). When Short Runs Beat Long Runs. Proceedings of the 2001 Genetic and
Evolutionary Computation Conference, p. 74-80, San Francisco CA.

Luke, S., C. Hohn, et al. (1998). Co-evolving Soccer Softbot Team Coordination with Genetic
Programming. H. Kitano, ed., RoboCup-97: Robot Soccer World Cup I. Lecture
Notes in Artificial Intelligence, p. 398-411, Springer-Verlag, Berlin.

Luke, S. and L. Spector (1996). Evolving Teamwork and Coordination with Genetic
Programming. J.R. Koza et al., eds, Proceedings of the First Annual Conference on
Genetic Programming, p. 150-156, Cambridge MA, The MIT Press.

Mamdani, E. and S. Assilian (1975). "An Experiment in Linguistic Synthesis with a Fuzzy
Logic Controller." International Journal of Man-Machine Studies 7(1): 1-13.
Nakashima, T., M. Takatani, et al. (2004). An Evolutionary Approach for Strategy Learning
in RoboCup Soccer. Proceedings of the 2004 IEEE International Conference on

Systems, Man and Cybernetics, Vol. 2, p. 2023-2028.

Noda, I. (1995). Soccer Server: A Simulator of Robocup. Proceedings of Al Symposium '95.
Japanese Society for Artificial Intelligence, pp. 29-34.

Noda, I, H. Matsubara, et al. (1998). "Soccer Server: A Tool for Research on Multiagent
Systems." Applied Artificial Intelligence 12: 233-250.

Noda, I. and P. Stone (2001). The RoboCup Soccer Server and CMUnited: Implemented
Infrastructure for MAS research. T. Wagner and O. Rana, eds, International
Workshop on Infrastructure for Multi-Agent Systems (Agents 2000). Lecture Notes
in Computer Science, p. 94-101, Barcelona, Spain.



174 Robot Soccer

Riedmiller, M., T. Gabel, et al. (2005). Brainstormers 2D - Team Description 2005. Team
Description Papers, Proceedings of RoboCup 2005 (CD) (to appear).

Riedmiller, M., A. Merke, et al. (2001). Karlsruhe Brainstormers - a Reinforcement Learning
Approach to Robotic Soccer. P. Stone, T. Balch and G. Kraetszchmar, eds,
RoboCup-2000: Robot Soccer World Cup IV. Lecture Notes in Artificial
Intelligence., Springer Verlag, Berlin.

Riley, J. (2003). The SimpleSoccer Machine Learning Environment. S.-B. Cho, H. X. Nguen
and Y. Shan, eds, Proceedings of the First Asia-Pacific Workshop on Genetic
Programming, p. 24-30, Canberra, Australia.

Riley, J. (2007). Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator.
Robotic Soccer. P. Lima. Vienna, I-Tech Education and Publishing,: 281-306.

Stone, P. (1998). Layered Learning in Multiagent Systems. PhD Thesis, Computer Science
Department, Technical Report CMU-CS98-187, Carnegie Mellon University.

Stone, P. and R. Sutton (2001). Scaling Reinforcement Learning Toward RoboCup Soccer.
Proceedings of the Eighteenth International Conference on Machine Learning,
Williamstown MA.

Stone, P, R. S. Sutton, et al. (2005). "Reinforcement Learning for RoboCup-Soccer
Keepaway." Adaptive Behavior 13(3): 165-188.

Stone, P., R. S. Sutton, et al. (2001). Reinforcement Learning for 3 vs. 2 Keepaway. Robocup
2000: Robot Soccer World Cup IV. P. Stone, T.R. Balch, and G.K. Kraetzschmar, eds.
Lecture Notes In Computer Science, vol. 2019, p. 249-258, Springer-Verlag, London.

Stone, P. and M. Veloso (1999). Team-partitioned, Opaque-transition Reinforcement
Learning. Proceedings of the Third International Conference on Autonomous
Agents, Seattle WA.

Stone, P. and M. M. Veloso (2000). Layered Learning. Proceedings of the Eleventh European
Conference on Machine Learning, p. 369-381, Springer, Berlin.

Uchibe, E. (1999). Cooperative Behavior Acquisition by Learning and Evolution in a Multi-
Agent Environment for Mobile Robots. PhD Thesis, Osaka University.

Watkins, C. (1989). Learning from Delayed Rewards. PhD Thesis, King's College, University
of Cambridge.

Whiteson, S., N. Kohl, et al. (2003). Evolving Keepaway Soccer Players through Task
Decomposition. E. Cantu-Paz et al., eds, Genetic and Evolutionary Computation -
GECCO-2003, volume 2723 of Lecture Notes in Computer Science, p. 356-368,
Chicago IL, Spinger-Verlag.

Whiteson, S., N. Kohl, et al. (2005). "Evolving Keepaway Soccer Players through Task
Decomposition." Machine Learning 59: 5-30.

Whiteson, S. and P. Stone (2003). Concurrent Layered Learning. Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems, p.
193-200.

Zadeh, L. (1965). "Fuzzy Sets." Journal of Information and Control Vol. 8.



